Recognition of Protein Substrates by Protein-disulfide Isomerase
نویسندگان
چکیده
منابع مشابه
Organocatalysts of oxidative protein folding inspired by protein disulfide isomerase.
Organocatalysts derived from diethylenetriamine effect the rapid isomerization of non-native protein disulfide bonds to native ones. These catalysts contain a pendant hydrophobic moiety to encourage interaction with the non-native state, and two thiol groups with low pKa values that form a disulfide bond with a high E°' value.
متن کاملCompact Conformations of Human Protein Disulfide Isomerase
Protein disulfide isomerase (PDI) composed of four thioredoxin-like domains a, b, b', and a', is a key enzyme catalyzing oxidative protein folding in the endoplasmic reticulum. Large scale molecular dynamics simulations starting from the crystal structures of human PDI (hPDI) in the oxidized and reduced states were performed. The results indicate that hPDI adopts more compact conformations in s...
متن کاملPlasticity of Human Protein Disulfide Isomerase
Protein disulfide isomerase (PDI), which consists of multiple domains arranged as abb'xa'c, is a key enzyme responsible for oxidative folding in the endoplasmic reticulum. In this work we focus on the conformational plasticity of this enzyme. Proteolysis of native human PDI (hPDI) by several proteases consistently targets sites in the C-terminal half of the molecule (x-linker and a' domain) lea...
متن کاملProtein Disulfide Isomerase and Host-Pathogen Interaction
Reactive oxygen species (ROS) production by immunological cells is known to cause damage to pathogens. Increasing evidence accumulated in the last decade has shown, however, that ROS (and redox signals) functionally regulate different cellular pathways in the host-pathogen interaction. These especially affect (i) pathogen entry through protein redox switches and redox modification (i.e., intra-...
متن کاملScanning and escape during protein-disulfide isomerase-assisted protein folding.
During oxidative protein folding, efficient catalysis of disulfide rearrangements by protein-disulfide isomerase is found to involve an escape mechanism that prevents the enzyme from becoming trapped in covalent complexes with substrates that fail to rearrange in a timely fashion. Protein-disulfide isomerase mutants with only a single active-site cysteine catalyze slow disulfide rearrangements ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Biological Chemistry
سال: 1999
ISSN: 0021-9258
DOI: 10.1074/jbc.274.46.32757